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We have identified a numerical instability that appears in algorithms for the linear
propagation of waves in the presence of an advective flow. This instability is due to the
coupling between the advective and wave terms and cannot be identified if stability
conditions are derived separately for these two terms. It can appear in explicit or
semi-implicit calculations using upwinded or centered spatial differences. We show
that a stable scheme can be obtained by introducing a predictor step for the wave
terms. When the semi-implicit treatment of the waves is used, the semi-implicit
operator must be applied in the predictor step as well as in the corrector step. We
present an improved formulation of the semi-implicit coefficient to take advection into
account. c© 1999 Academic Press

1. INTRODUCTION

The magnetohydrodynamic (MHD) equations are often used to study the low-frequency,
long-wavelength behavior of plasmas. Strongly magnetized, slowly flowing plasmas are
frequently encountered both in the laboratory and in astrophysics. In this situation, time
integration of the MHD equations by explicit methods can be very inefficient for following
the evolution of the plasma. The explicit treatment of the waves requires very small time
steps because of the very large Alfv´en speed present in the plasma. In order to obtain
solutions efficiently, semi-implicit schemes for MHD have been developed [1–8]. A semi-
implicit algorithm is more efficient than a fully implicit one, but the method still allows
the time step to be chosen according to considerations of accuracy rather than stability [3].
The only time step restriction comes from the explicit treatment of the advective terms. The
stability analysis of these algorithms has typically been carried out by considering wave
propagation and advection separately [3, 4, 8].

We have extended these algorithms to study the global structure and dynamics of the
solar corona [9–11] For this case one must confront the wide range of plasma parameters

346

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.



ALGORITHMS FOR WAVES WITH LARGE FLOWS 347

spanned by the solar atmosphere. Near the solar surface, plasma motions are slow, and the
hot, strongly magnetized plasma is both subsonic and sub-Alfv´enic. An implicit treatment
of the waves is again necessary for an economical calculation. However, a few solar radii
above the solar surface, advection dominates. Here the coronal plasma expands outward as
the solar wind becomes both supersonic and super-Alfv´enic. We have found that when the
flow speed is large, traditional methods [3, 4, 8] for the advancement of the MHD equations
can fail because of a linear numerical instability. This instability was not detected in the
past either because the flow speed was not large enough to trigger the instability or because
the viscosity and resistivity were large enough to stabilize the algorithm.

In this paper we discuss how the coupling of the wave-like terms with the advective terms
may introduce a numerical instability. We show how this instability can be suppressed
and how even the stability of explicit schemes can be improved. This instability cannot
be identified if stability conditions are derived separately for wave propagation and for
advection. A heuristic method developed by Hirt [12] is applied to investigate the instability.
The proposed improvements involve the use of new predictor steps that include a fraction
of the wave terms. An algorithm that did not suffer from this instability was presented by
Lerbinger and Luciani [6].

We also discuss the stability of the semi-implicit algorithm, and we generalize the choice
of the semi-implicit coefficient for the case when advection is significant. In the Appendix
we briefly discuss how stable second-order accurate algorithms can be implemented.

2. THE WAVE–ADVECTION INSTABILITY

The phenomenon we are investigating can be illustrated with the help of a simplified sub-
set of the MHD equations. Let us consider the following system of linear partial differential
equations:

∂a

∂t
+ v ∂a

∂x
= −c

∂b

∂x
,

(1)
∂b

∂t
+ v ∂b

∂x
= −c

∂a

∂x
.

This pair of equations describes the linear propagation of waves in one dimension, in the
presence of a fixed uniform advective flowv. For example, in the case of a sound wave,a
would be proportional to the perturbed pressure,b would be proportional to the perturbed
velocity, andc would be the sound speed. The dispersion relation for Eq. (1) for waves of
the formei (kx−ωt) is

ω = k(v ± c). (2)

We will show that the coupling between advection and waves may cause a numerical
instability in a finite-difference implementation of (1), how the instability can be avoided,
and how the stable algorithm needs to be modified when we introduce a semi-implicit
operator. To investigate the stability we will use the heuristic method described by Hirt
[12], which consists of reducing finite-difference equations to differential equations by
expanding terms in a Taylor series. The zero-order term represents the original differential
equation, whereas higher-order terms (truncation errors) determine the stability properties.
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Hirt’s method applies in the small wave number limit and gives necessary conditions for
stability (see [15], where its relation with the usual Von Neumann stability analysis is
pointed out).

2.1. Centered Predictor–Corrector

The following algorithm represents one numerical discretization of Eq. (1). It is based on
a leapfrog formulation of the wave terms in time, and a centered in space predictor–corrector
formulation for the advective terms,

a∗j − an−1/2
j

1t
+ van−1/2

j+1 − an−1/2
j−1

21x
= −βc

bn
j+1/2− bn

j−1/2

1x
, P (3)

an+1/2
j − an−1/2

j

1t
+ va∗j+1− a∗j−1

21x
= −c

bn
j+1/2− bn

j−1/2

1x
, C (4)

b∗j+1/2− bn
j+1/2

1t
+ vbn

j+3/2− bn
j−1/2

21x
= −βc

an+1/2
j+1 − an+1/2

j

1x
, P (5)

bn+1
j+1/2− bn

j+1/2

1t
+ vb∗j+3/2− b∗j−1/2

21x
= −c

an+1/2
j+1 − an+1/2

j

1x
, C (6)

where “P” and “C” indicate respectively the predictor and the corrector steps. Botha andb
are defined on meshes that are staggered in space and time:an+1/2

j ≡a(n1t +1t/2, j1x),
bn

j+1/2≡ b(n1t, j1x+1x/2).
The choice of staggered meshes (in space and time) is motivated by the leapfrog advance

of the wave terms. A straightforward analysis of the predictor–corrector treatment of the
scalar advective equation

∂a

∂t
+ v ∂a

∂x
= 0 (7)

shows that this algorithm for advection is stable when an appropriate CFL condition on the
time step is satisfied [8]. Traditionally, these two algorithms were combined (withβ = 0)
when both advection and waves were present simultaneously [3, 4, 8]. We have recently
found that the coupling between advection and the wave terms creates an instability. We
will show below that the term involvingβ in the predictor is required to produce a stable
algorithm. It is precisely the cure of this instability that is a central contribution of this
paper.

We expand all quantities in Eqs. (3)–(6) about(n1t, j1x) and omit the indices. This
gives us the equations

∂a

∂t
+ v ∂a

∂x
+ c

∂b

∂x
= v21t

2

∂2a

∂x2
− vc1t

(
1

2
− β

)
∂2b

∂x2
+ O(12),

(8)
∂b

∂t
+ v ∂b

∂x
+ c

∂a

∂x
= v21t

2

∂2b

∂x2
− vc1t

(
1

2
− β

)
∂2a

∂x2
+ O(12),

where we have eliminated mixed derivatives using Eq. (1). For convenience, we assume
thatv≥ 0. This is not a restrictive assumption, since an analysis with negativev yields the
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same results. The dispersion relation for this system is

ω = k(v ± c)− i
v21t

2
k2± i vc1t

(
1

2
− β

)
k2. (9)

Note that in the limit1t→ 0 we retrieve the correct dispersion relation in Eq. (2), as ex-
pected. The scheme is unstable if the imaginary part ofω is positive. The second term on
the right-hand side of Eq. (9) is a damping term, which is due to the predictor–corrector
scheme. The third term, which involvesvc, is due to the coupling of the waves and advection,
and may cause instability (whenv < c) unlessβ = 1

2 [13]. The finite1x and1t disper-
sion relation for this algorithm is given in Section 3.1. In particular, previous algorithms
[3, 4, 8] (which hadβ = 0), were unstable to this mode; these algorithms were only physi-
cally useful when the dissipation exceeded the growth rate of this mode. Since the growth
rate of the instability is proportional tov, we did not discover this mode until we simulated
problems with significant flow. This is the parameter regime for our coronal simulation
studies, in which the solar wind expands supersonically and super-Alfv´enically away from
the Sun.

This advection algorithm is only first-order accurate in time. In the Appendix we briefly
discuss the second-order accurate Adams–Bashforth/Adams–Moulton predictor–corrector.
Since we are interested in problems with shocks and discontinuities the utility of second-
order advection schemes may be limited. As is well known [14, p. 345], higher-order
advection schemes are not monotonic near steep gradients.

2.2. Upwinding and Predictor–Corrector

A nonlinear instability may appear in the centered predictor–corrector scheme when steep
profiles are present. For this reason upwinding is used as an alternative. The wave–advection
coupling influences the stability of this algorithm too. We write the finite-difference algo-
rithm as

an+1/2
j − an−1/2

j

1t
+ van−1/2

j − an−1/2
j−1

1x
= −c

bn
j+1/2− bn

j−1/2

1x
, (10)

bn+1
j+1/2− bn

j+1/2

1t
+ vbn

j+1/2− bn
j−1/2

1x
= −c

an+1/2
j+1 − an+1/2

j

1x
, (11)

where we have assumed thatv≥ 0. Notice that no predictor step is present. Application of
Hirt’s method [12] gives

∂a

∂t
+ v ∂a

∂x
+ c

∂b

∂x
=
(
v1x

2
− v

21t

2

)
∂2a

∂x2
+ vc1t

2

∂2b

∂x2
+ O(12),

(12)
∂b

∂t
+ v ∂b

∂x
+ c

∂a

∂x
=
(
v1x

2
− v

21t

2

)
∂2b

∂x2
+ vc1t

2

∂2a

∂x2
+ O(12).

The corresponding dispersion relation is

ω = k(v ± c)− i

(
v1x

2
− v

21t

2
± vc1t

2

)
k2. (13)
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Notice that a destabilizingvc term is present in this case as well. For numerical stability, a
necessary condition is

(|v| + c)
1t

1x
< 1. (14)

This is the well-known “CFL condition” for explicit stability, as in [14, p. 290]. For these
equations the stability region can be enlarged by eliminating thevc term as in Section 2.1.
For this purpose we have devised the following algorithm, which has predictor steps for the
wave terms only:

a∗j − an−1/2
j

1t
= −c

2

bn
j+1/2− bn

j−1/2

1x
, P (15)

an+1/2
j − an−1/2

j

1t
+ va∗j − a∗j−1

1x
= −c

bn
j+1/2− bn

j−1/2

1x
, C (16)

b∗j+1/2− bn
j+1/2

1t
= −c

2

an+1/2
j+1 − an+1/2

j

1x
, P (17)

bn+1
j+1/2− bn

j+1/2

1t
+ vb∗j+1/2− b∗j−1/2

1x
= −c

an+1/2
j+1 − an+1/2

j

1x
. C (18)

It is easy to verify that the wave–advection coupling terms disappear from Eq. (13), giving
the following necessary condition for stability,

v
1t

1x
< 1. (19)

Note that this scheme allows larger time steps to be taken than the scheme presented in
Eqs. (10)–(11). For further discussion see Section 3.3. Of course, there is also the additional
requirement that

c
1t

1x
< 1, (20)

from the explicit leapfrog treatment of the wave terms (see, for example, [14, p. 260]). In
the Appendix we show how to implement a second-order accurate upwind scheme that does
not suffer from the wave–advection instability.

2.3. Introducing the Semi-implicit Term

The leapfrog algorithm for the advancement of the linear wave equation is restricted to
small time steps as specified by Eq. (20). A fully implicit treatment of the wave terms can
remove this restriction. However, when realistic multidimensional cases are considered, this
may require the time-consuming inversion of nearly intractable matrices. The philosophy
behind the semi-implicit algorithm, as applied to MHD, can be found in Refs. [1–3]. The
semi-implicit method ensures stability through adispersive term added to Eq. (1), which we
rewrite as

∂a

∂t
+ v ∂a

∂x
= −c

∂b

∂x
,

(21)(
1− C21t2 ∂

2

∂x2

)
∂b

∂t
+ v ∂b

∂x
= −c

∂a

∂x
,



ALGORITHMS FOR WAVES WITH LARGE FLOWS 351

whereC2 is the semi-implicit coefficient. This coefficient needs to be chosen for stability
based on the value of1t [3]. The advantage of the semi-implicit method over a fully
implicit scheme is the introduction of symmetric operators that are more easily inverted.
The relationship between fully implicit and semi-implicit schemes is outlined by Caramana
[16]. For the scheme presented in Section 2.2, Eqs. (15)–(16) remain the same, but Eqs. (17)–
(18) are modified as

(1− βsD)
b∗j+1/2− bn

j+1/2

1t
= −c

2

an+1/2
j+1 − an+1/2

j

1x
, P (22)

(1− D)
bn+1

j+1/2− bn
j+1/2

1t
+ vb∗j+1/2− b∗j−1/2

1x
= −c

an+1/2
j+1 − an+1/2

j

1x
, C (23)

whereD represents the numerical implementation of the semi-implicit operator.βs is a
factor to be determined later for optimum stability. In the past [3, 4, 8] we had usedβs= 0
(i.e., no semi-implicit term in the predictor), which does not give maximum stability. We
now show thatβs= 1 gives optimum stability. Applying Hirt’s method, we can show that
the unstable wave–advection coupling term is

vc1t

2

[
(1− D)−1− (1− βsD)−1

]∂2a

∂x2
, (24)

which disappears if and only ifβs= 1.

3. VON NEUMANN STABILITY ANALYSIS

The results presented in the previous section can be incorporated into a single general
algorithm, the stability of which will be examined in detail in this section. We present the
algorithm and derive its dispersion relation. However, a simpler dispersion relation can be
derived in a heuristic way. From that we can extract an expression for the semi-implicit
coefficient. The correctness of our assumption is proveda posteriorithrough a numerical
analysis of the full dispersion relation.

3.1. The Full Dispersion Relation

We write a general algorithm for wave propagation in the presence of advection as

a∗ − an−1/2

1t
+ βa

f v
1a

1x

n−1/2

= −βa
wc
1bn

1x
, P (25)

an+1/2− an−1/2

1t
+ v1a∗

1x
= −c

1bn

1x
, C (26)

(1− βsD)
b∗ − bn

1t
+ βb

f v
1bn

1x
= −βb

wc
1a

1x

n+1/2

, P (27)

(1− D)
bn+1− bn

1t
+ v1b∗

1x
= −c

1a

1x

n+1/2

, C (28)

where we have simplified the notation. In order to be as general as possible, we have
introduced several nonnegative numerical factors:βa

f andβb
f set the fraction of the advective

term in the predictors of the equation fora andb; βa
w andβb

w do the same for the wave



352 LIONELLO, MIKI Ć, AND LINKER

term;βs sets the fraction of the semi-implicit term in the predictor equation forb. In order
to perform a Von Neumann stability analysis [14, p. 70], we introduce the following terms
in (25)–(28),

an+1/2
j = azn+1/2eik j1x, (29)

bn
j+1/2 = bzneik( j+1/2)1x, (30)

wherez= e−iω1t . After simplification, we obtain the dispersion relation

w2S(2) + w[(CwQw)
2Q(2)

a Q(2)
b + C f Q f

(
S(2)Q(1)

a + Q(1)
b

)]
+ (CwQw)

2Q(2)
a Q(2)

b + (C f Q f )
2Q(1)

a Q(1)
b = 0, (31)

where

w = z− 1,

Qw = 2 sin

(
k1x

2

)
,

Q f =
{

1− eik1x for upwinded differencing of advective terms
i sin(k1x) for centered differencing of advective terms,

S(1) = 1+ βsC
2 1t2

1x2
Q2
w,

S(2) = 1+ C2 1t2

1x2
Q2
w,

Cw = c1t

1x
,

C f = |v|1t

1x
,

Q(1)
a = 1− βa

f C f Q f ,

Q(2)
a = 1− βa

wC f Q f ,

Q(1)
b = 1− βb

f

C f Q f

S(1)
,

Q(2)
b = 1− βb

w

C f Q f

S(1)
.

For the algorithm to be numerically stable we need|z| ≤1. The quadratic equation (31)
can be solved analytically to investigate in detail the consequences of various choices of
parameters (βa

f , β
b
f , β

a
w , βb

w, βs, and the semi-implicit coefficientC2) on the stability of
the algorithm. Notice that in the limitk1x→ 0 the stability limits derived from Eq. (31)
are consistent with those derived from Eqs. (9) and (13). In particular, in previous work we
developed a semi-implicit term for the case when flows were small, compared to the Alfv´en
and sound speeds [3]. In the application of our algorithm to the modeling of the solar wind,
this assumption is not appropriate: the flow speed in fact exceeds the wave speeds, since
the solar wind becomes supersonic and super-Alfv´enic as it expands into interplanetary
space. We have extended the formulation of the semi-implicit term to this case, as shown
below. Extracting from Eq. (31) the analytical expression for the semi-implicit coefficient
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C2 that gives the maximum region of stability in(Cw,C f ) space (CFL numbers for waves
and flow) is a formidable task. Hence we prefer to proceed in a more heuristic way.

3.2. Heuristic Derivation of the Semi-implicit Coefficient

In order to obtain an expression for the semi-implicit factorC2 in the presence of advec-
tion, let us first consider the dispersion relation whenv = 0. From Eq. (31), we can show
that in this case,

ω̃2 = c2k̃2

1+ C2k̃21t2
, (32)

where

ω̃ = sin

(
ω1t

2

)
2

1t
,

(33)

k̃ = sin

(
k1x

2

)
2

1x
.

For stabilityω must be real, which requires ˜ω≤ 2/1t . This gives the familiar expression
for C2 found in [3]:

C2≥max

{
1x2

41t2

(
C2
w − 1

)
, 0

}
. (34)

Comparing Eq. (2) (the analytical dispersion relation when advection is present) with
Eq. (32), we suggest the following ansatz to include the effect of advection in a simpli-
fied dispersion relation,

(ω̃ − k̃v)2 = c2k̃2

1+ C2k̃21t2
. (35)

Considering the most unstable case,k̃ = k̃max= 2/1x, we obtain the following inequality
that the semi-implicit coefficient must satisfy:

C2≥max

{
1x2

41t2

[
C2
w

(1− C f )2
− 1

]
, 0

}
. (36)

Detailed analysis of the dispersion relation, Eq. (31), confirms that this choice of semi-
implicit term indeed gives a stable algorithm even in the presence of significant flows
(see Section 3.4). Note that whenC f = 1 (the CFL limit for pure advection),C2 becomes
infinite. A possible interpretation of this is that the semi-implicit coefficient cannot stabilize
advection. This implies also thatC f must not be too close to one in order to limit the amount
of artificial inertia introduced by the semi-implicit operator.

When this algorithm is implemented for the MHD equations, the semi-implicit coefficient
is given by Eq. (36) using the local wave and flow speeds. We find that this formulation is
stable and makesC2 nonuniform in space, which eliminates the artificial inertia associated
with the semi-implicit term whenCw is small.
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FIG. 1. Stability region in the(Cw,Cf ) plane for explicit schemes (C2= 0): (a) centered differences,βa
f =

βb
f = 1, βa

w =βb
w = 0; (b) centered differences,βa

f =βb
f = 1, βa

w =βb
w = 1/2; (c) upwind differences,βa

f =βb
f =

βa
w =βb

w = 0; (d) upwind differences,βa
f =βb

f = 0, βa
w =βb

w = 1/2. Note that the algorithms are stable forCf = 0
andCw < 1.

3.3. Explicit Algorithms

Equation (31) is a quadratic inw and can be solved exactly. We will study the solutions in
the two parameter space(Cw,C f ). We consider explicit cases (C2= 0) first. Results are re-
ported in Fig. 1, where the shaded area implies stability (i.e., if Eq. (31) predicts stability for
all the possible wave numbersk). We first show that the traditional treatment of Eq. (1) (in
which there are no wave terms in the predictor) has regions of instability. Namely, the stabil-
ity of the centered predictor–corrector algorithm (βa

f =βb
f = 1, βa

w =βb
w = 0) is presented in

Fig. 1a, which shows that the scheme is explicitly stable when the flow is absent (C f = 0) or
there are no waves (Cw = 0). When the wave speed is small, the flow has a stabilizing effect
due to the diffusive term on the right-hand sides of Eq. (8) that is proportional tov21t/2.
Introducing the fractional wave terms in the predictor (βa

f =βb
f = 1, βa

w =βb
w = 1/2) greatly

improves the stability of the algorithm (see Fig. 1b), as expected from the discussion in
Section 2.1.

Next, we address the scheme with upwinding. In Fig. 1c we present the stability plot for
an upwind scheme without a predictor–corrector (βa

f =βb
f = 0, βa

w =βb
w = 0). This result is
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in exact agreement with Eq. (14). When we introduce a predictor step containing a fraction
of the wave terms (βa

f =βb
f = 0, βa

w =βb
w = 1/2), we can extend the region of stability, as

shown in Fig. 1d. We have tried to use different values forβa
w andβb

w, but the maximum
stability region is found when both coefficients are one half in value, in accordance with
the analysis in Section 2.

3.4. Semi-Implicit Algorithms

We now introduce a finite semi-implicit coefficient in the algorithm and study the sta-
bility for Cw > 1. Let us first examine a case with centered differences. We include wave
terms in the predictor and the classic semi-implicit coefficient given by Eq. (34). The
parameters areβa

f =βb
f = 1, βa

w =βb
w = 1/2, βs= 0. As shown in Fig. 2a, using a semi-

implicit term only in the corrector cannot yield a stable algorithm forCw > 1 unless there
is no flow. Adding the semi-implicit term in the predictor (i.e., settingβs= 1) greatly

FIG. 2. Stability region in the(Cw,Cf ) plane for semi-implicit schemes: (a) centered differences, classic
semi-implicit coefficient,βa

f =βb
f = 1, βa

w =βb
w = 1/2, βs= 0; (b) centered differences, classic semi-implicit co-

efficient,βa
f =βb

f = 1, βa
w =βb

w = 1/2, βs= 1; (c) upwind differences, classic semi-implicit coefficient,βa
f =βb

f =
0, βa

w =βb
w = 1/2, βs= 0; (d) full stability: centered differences, new semi-implicit coefficient,βa

f =βb
f = 1,

βa
w =βb

w = 1/2, βs= 1, or upwind differences, classic semi-implicit coefficient,βa
f =βb

f = 0, βa
w =βb

w = 1/2,
βs= 1. Note that the algorithms are stable forCf = 0 and allCw.
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TABLE I

Parameters in Eqs. (25)–(28) That Characterize

Algorithms Stable for Cf < 1 and anyCw

Differencing SI coefficient βs βa
f βb

f βa
w βb

w

Centered New 1 1 1 1
2

1
2

Upwinded Classic 1 0 0 1
2

1
2

Upwinded New 1 ≤1
2
≤1

2
1
2

1
2

improves the stability properties (see Fig. 2b). The region of stability can be extended even
further (i.e., stable for allCw, for all values ofC f < 1) by using the new choice of semi-
implicit coefficient in Eq. (36) with centered differences and a predictor–corrector scheme
(βa

f =βb
f = 1, βa

w =βb
w = 1/2, βs= 1), as shown in Fig. 2d.

The situation is similar when upwind differences are used. For example, when one uses
a predictor step for the waves and the classic semi-implicit coefficient in the corrector
only (βa

f =βb
f = 0, βa

w =βb
w = 1/2, βs= 0), the algorithm is stable forCw <∼ 2, as shown

in Fig. 2c. Introducing the semi-implicit term in the predictor (βs= 1) gives full stability for
C f < 1, as shown in Fig. 2d. It is interesting to note that in this case the classic semi-implicit
coefficient is sufficient for stability. Even though stability can be obtained in this case by
using the classic semi-implicit term, in general it is advisable to use the improved semi-
implicit coefficient, Eq. (36), for the following reason. When this algorithm is implemented
for the MHD equations, it is frequently difficult to separate the “advective” terms from the
“wave” terms. For example, consider Faraday’s equation for ideal MHD (E = −v× B/c),

∂B
∂t
= ∇ × (v× B). (37)

The term∇ × (v× B) has both an advective component,−v · ∇B, and a wave component
(the other parts). Therefore, it would be difficult to implement the above algorithm [upwind
differences with no predictor for the advective terms (βa

f =βb
f = 0) and a predictor for the

wave terms (βa
w =βb

w = 1/2)]. We have found that it is necessary to use the new semi-
implicit coefficient whenβa

f andβb
f are nonzero. Full stability forC f < 1 can be obtained

whenβa
f ≤ 1/2 andβb

f ≤ 1/2 and the new semi-implicit coefficient is used. In particular the
algorithm withβa

f =βb
f =βa

w =βb
w = 1/2, with the new semi-implicit coefficient (in both

the predictor and the corrector,βs= 1), and with upwind differences, is stable for allCw

for C f < 1. This algorithm is our choice for advancing the full MHD equations.
In Table I we summarize the parameters that give fully stable algorithms forC f < 1. An

algorithm which had the semi-implicit and the wave terms in the predictor was presented
by Lerbinger and Luciani [6].

4. CONCLUSION

In this paper we have analyzed the numerical stability of algorithms for the advancement
of wave–advection equations. Our application is the time integration of the MHD equations.
Traditional algorithms were developed for applications where the flow speed was small
compared to the Alfv´en and sound speeds [3, 4, 8]. While applying our MHD model to
the solar wind, which becomes supersonic and super-Alfv´enic in interplanetary space, we
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discovered a numerical instability that occurs in regions where the flow speed is large. By
analyzing the stability of our algorithm, as applied to a simplified model with waves and
advection, using Hirt’s technique [12] and a Von Neumann stability analysis, we determined
that the source of the instability was the coupling between wave-like terms in the leapfrog
advance and the advective terms.

We have presented techniques for fixing this instability, and we have proved that the
resulting algorithm is stable. The implementation of this improved algorithm in our spherical
MHD code has resulted in a more robust code (for an application see Linkeret al. [17]).
We have also presented an improved formulation of the semi-implicit coefficient that takes
into account the advective terms.

APPENDIX: SECOND-ORDER ACCURATE SCHEMES

In the paper we have examined advection schemes that are only first-order accurate. We
now briefly discuss how the stability properties are modified when second-order accurate
schemes are used. The central scheme presented in Section 2.1 can be made second-order ac-
curate by changing to Adams–Bashforth/Adams–Moulton predictor–corrector. We rewrite
Eqs. (3) and (4) as

a∗j − an−1/2
j

1t
=−v

(
3

2

an−1/2
j+1 − an−1/2

j−1

21x
− 1

2

an−3/2
j+1 − an−3/2

j−1

21x

)
−βc

bn
j+1/2− bn

j−1/2

1x
, (38)

an+1/2
j − an−1/2

j

1t
=−v

(
1

2

a∗j+1− a∗j−1

21x
+ 1

2

an−1/2
j+1 − an−1/2

j−1

21x

)
− c

bn
j+1/2− bn

j−1/2

1x
. (39)

Equations (5) and (6) can be rewritten analogously. After we apply Hirt’s method the
following first-order term appears,

−(1− β)vc1t

2

∂2b

∂x2
, (40)

which can be eliminated if we chooseβ = 1 because the provisional valuea∗ is actually
an approximation foran+1/2 and so a full predictor step for the waves is needed.

Similarly we can convert the upwind scheme in Section 2.2 to second order by introducing
the modified Beam–Warming [18] algorithm

a∗j − an−1/2
j

1t
= −βc

bn
j+1/2− bn

j−1/2

1x
, (41)

an+1/2
j −an−1/2

j

1t
= v3a∗j − 4a∗j−1+a∗j−2

21x
+ v21t

a∗j − 2a∗j−1+a∗j−2

21x2
− c

bn
j+1/2− bn

j−1/2

1x
.

(42)

The resulting first-order error term is

−
(

1

2
− β

)
vc1t

2

∂2b

∂x2
. (43)

In this caseβ must be1
2. In fact thea∗ terms in the corrector are actually an approximation

for an. The same applies to Eqs. (17) and (18).
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9. Z. Mikić and J. A. Linker, The large-scale structure of the solar corona and inner heliosphere, inSolar Wind
Eight, edited by D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, and M. Neugebauer (AIP Press,
Woodbury, NY, 1996), Vol. 382, p. 104.
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