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We have identified a numerical instability that appears in algorithms for the linear
propagation of waves in the presence of an advective flow. This instability is due to the
coupling between the advective and wave terms and cannot be identified if stability
conditions are derived separately for these two terms. It can appear in explicit or
semi-implicit calculations using upwinded or centered spatial differences. We show
that a stable scheme can be obtained by introducing a predictor step for the wave
terms. When the semi-implicit treatment of the waves is used, the semi-implicit
operator must be applied in the predictor step as well as in the corrector step. We
presentanimproved formulation of the semi-implicit coefficient to take advection into
account. © 1999 Academic Press

1. INTRODUCTION

The magnetohydrodynamic (MHD) equations are often used to study the low-freque
long-wavelength behavior of plasmas. Strongly magnetized, slowly flowing plasmas
frequently encountered both in the laboratory and in astrophysics. In this situation, t
integration of the MHD equations by explicit methods can be very inefficient for followir
the evolution of the plasma. The explicit treatment of the waves requires very small t
steps because of the very large Adfv'speed present in the plasma. In order to obta
solutions efficiently, semi-implicit schemes for MHD have been developed [1-8]. A sel
implicit algorithm is more efficient than a fully implicit one, but the method still allow:
the time step to be chosen according to considerations of accuracy rather than stabilit
The only time step restriction comes from the explicit treatment of the advective terms.
stability analysis of these algorithms has typically been carried out by considering w
propagation and advection separately [3, 4, 8].

We have extended these algorithms to study the global structure and dynamics o
solar corona [9—11] For this case one must confront the wide range of plasma param
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spanned by the solar atmosphere. Near the solar surface, plasma motions are slow, a
hot, strongly magnetized plasma is both subsonic and suleiilévAn implicit treatment
of the waves is again necessary for an economical calculation. However, a few solar
above the solar surface, advection dominates. Here the coronal plasma expands outw
the solar wind becomes both supersonic and supereAlt:'We have found that when the
flow speed is large, traditional methods [3, 4, 8] for the advancement of the MHD equati
can fail because of a linear numerical instability. This instability was not detected in
past either because the flow speed was not large enough to trigger the instability or be
the viscosity and resistivity were large enough to stabilize the algorithm.

In this paper we discuss how the coupling of the wave-like terms with the advective te
may introduce a numerical instability. We show how this instability can be suppres
and how even the stability of explicit schemes can be improved. This instability can
be identified if stability conditions are derived separately for wave propagation and
advection. A heuristic method developed by Hirt[12] is applied to investigate the instabil
The proposed improvements involve the use of new predictor steps that include a fra
of the wave terms. An algorithm that did not suffer from this instability was presented
Lerbinger and Luciani [6].

We also discuss the stability of the semi-implicit algorithm, and we generalize the che
of the semi-implicit coefficient for the case when advection is significant. In the Appen
we briefly discuss how stable second-order accurate algorithms can be implemented.

2. THE WAVE-ADVECTION INSTABILITY

The phenomenon we are investigating can be illustrated with the help of a simplified -
set of the MHD equations. Let us consider the following system of linear partial differen
equations:

da da b
— 4+ v— =—-C—,
ot 0X X
(1)
ob ab oa
— 4+ v— =—-C—.
ot X X

This pair of equations describes the linear propagation of waves in one dimension, it
presence of a fixed uniform advective flawFor example, in the case of a sound wawve,

would be proportional to the perturbed presstrejould be proportional to the perturbed
velocity, andc would be the sound speed. The dispersion relation for Eq. (1) for waves
the forme -« s

® =Kk £0c). 2

We will show that the coupling between advection and waves may cause a nume
instability in a finite-difference implementation of (1), how the instability can be avoide
and how the stable algorithm needs to be modified when we introduce a semi-imf
operator. To investigate the stability we will use the heuristic method described by |
[12], which consists of reducing finite-difference equations to differential equations
expanding terms in a Taylor series. The zero-order term represents the original differe
equation, whereas higher-order terms (truncation errors) determine the stability prope
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Hirt's method applies in the small wave number limit and gives necessary conditions
stability (see [15], where its relation with the usual Von Neumann stability analysis
pointed out).

2.1. Centered Predictor—Corrector

The following algorithm represents one numerical discretization of Eq. (1). Itis basec
aleapfrog formulation of the wave terms in time, and a centered in space predictor—corr
formulation for the advective terms,

n-1/2 n-1/2 n-1/2
ke NN . I P, T, ek (5 SN
At 2AX AX ’
n+1/2 n-1/2
G S, k. SR . ETIPSA
At 2AX AX ’
n+1/2 n+1/2
bi 12 = Blyap2 i vb?+3/2 — b1 - —ﬁc& P ®)
At 2AX AX ’
n+1/2 n+1/2
bitie = Bfsre | Blige—bjip A -a
+ v = —C ) C (6)
At 2AX AX

where “P” and “C” indicate respectively the predictor and the corrector stepsaBottb
are defined on meshes that are staggered in space and?ﬁffé:z a(nAt + At/2, j Ax),
b1/, =b(MAL, JAX+ AX/2).

The choice of staggered meshes (in space and time) is motivated by the leapfrog ad
of the wave terms. A straightforward analysis of the predictor—corrector treatment of
scalar advective equation

Ja Ja
at v ax =0 @
shows that this algorithm for advection is stable when an appropriate CFL condition or
time step is satisfied [8]. Traditionally, these two algorithms were combined D)
when both advection and waves were present simultaneously [3, 4, 8]. We have rec
found that the coupling between advection and the wave terms creates an instability
will show below that the term involving in the predictor is required to produce a stabl
algorithm. It is precisely the cure of this instability that is a central contribution of tt
paper.

We expand all quantities in Egs. (3)—(6) abénit, j Ax) and omit the indices. This
gives us the equations

da da db  v2At d2%a 1 32b
e = g 0(A?
ot v ax + ax 2 ox2 ( ﬂ) +O(A%,

ab  db  da  v?Atd%b d%a
<o . o(A2
at TV T T T2 e T ( ﬂ) +O(A%,

®)

where we have eliminated mixed derivatives using Eq. (1). For convenience, we ass
thatv > 0. This is not a restrictive assumption, since an analysis with negayiigds the
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same results. The dispersion relation for this system is
2
2 1 2
a)—k(v:I:C)—I k:i:IvCAt > — B |k 9)

Note that in the limitAt — O we retrieve the correct dispersion relation in Eq. (2), as e
pected. The scheme is unstable if the imaginary padgt &f positive. The second term on
the right-hand side of Eq. (9) is a damping term, which is due to the predictor—corre
scheme. The third term, which involves, is due to the coupling of the waves and advectior
and may cause instability (whan< c) unlessg =% [13]. The finite Ax and At disper-
sion relation for this algorithm is given in Section 3.1. In particular, previous algoritht
[3, 4, 8] (which hadB = 0), were unstable to this mode; these algorithms were only phy
cally useful when the dissipation exceeded the growth rate of this mode. Since the gr
rate of the instability is proportional t@ we did not discover this mode until we simulatec
problems with significant flow. This is the parameter regime for our coronal simulati
studies, in which the solar wind expands supersonically and supeeftfzlly away from
the Sun.

This advection algorithm is only first-order accurate in time. In the Appendix we brie
discuss the second-order accurate Adams—Bashforth/Adams—Moulton predictor—corr
Since we are interested in problems with shocks and discontinuities the utility of sec
order advection schemes may be limited. As is well known [14, p. 345], higher-or
advection schemes are not monotonic near steep gradients.

2.2. Upwinding and Predictor—Corrector

A nonlinear instability may appear in the centered predictor—corrector scheme when ¢
profiles are present. For this reason upwinding is used as an alternative. The wave—adv
coupling influences the stability of this algorithm too. We write the finite-difference alg
rithm as

n+1/2 n-1/2 n—-1/2 n-1/2 n n
a; —a a; —a; b" —b"_
] ] + v S b e L (10)
At AX AX
n+ n+l/2 _nt1/2
bt +1/2 b1/ bl 12 — b'jll/z Q1 — g
+v —C———— , (11)
At AX AX

where we have assumed that 0. Notice that no predictor step is present. Application c
Hirt's method [12] gives

da_ oa b _ (vAX VAt 9%a | veat 9%b L o),
ot ax | ax \ 2 2 ) ax2 2 ax2 12)
ob  9b . 93 _ (vAX v?AtY 9%b | veat 9% Lo,
at o ax | ax \ 2 ax2 2 ax2
The corresponding dispersion relation is
vAX  v?At  vCAt
=k(vEc) —i — + k2. 13
o=kuto-i(25 - ) (19
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Notice that a destabilizingc term is present in this case as well. For numerical stability,
necessary condition is

At
qu_C)R <1 (14)

This is the well-known “CFL condition” for explicit stability, as in [14, p. 290]. For thes
equations the stability region can be enlarged by eliminating ¢iterm as in Section 2.1.
For this purpose we have devised the following algorithm, which has predictor steps fol
wave terms only:

n-1/2
a]k —q; _C bT+1/2 - bri]fl/2
__¢ , P (15)
At 2 AX
n+1/2  _n-1/2 * * n i
al _a ar —ar_ b’ —bf_
J R Vi B B LS e R (16)
n+1/2 n+1/2
biie =Bl caiy” —a;
__°c ., P 7
At 2 AX
M+l bt .., — bt alt - At
j+1/2 j+1/2 T j+1/2 i-yz T+l ! . C (18)
At AX AX

It is easy to verify that the wave—advection coupling terms disappear from Eq. (13), giv
the following necessary condition for stability,

— <1 19
vy < (19)

Note that this scheme allows larger time steps to be taken than the scheme presen
Egs. (10)—(11). For further discussion see Section 3.3. Of course, there is also the addi
requirement that

At
c— <1, (20)
AX

from the explicit leapfrog treatment of the wave terms (see, for example, [14, p. 260])
the Appendix we show how to implement a second-order accurate upwind scheme that
not suffer from the wave—advection instability.

2.3. Introducing the Semi-implicit Term

The leapfrog algorithm for the advancement of the linear wave equation is restricte
small time steps as specified by Eq. (20). A fully implicit treatment of the wave terms
remove this restriction. However, when realistic multidimensional cases are considered
may require the time-consuming inversion of nearly intractable matrices. The philoso
behind the semi-implicit algorithm, as applied to MHD, can be found in Refs. [1-3]. T
semi-implicit method ensures stability through adispersive term added to Eq. (1), whict
rewrite as

oa oa aob
o7 tUoo = —C—,
ot aX X 21)
2
P LTSNS
ax2 ) ot X X
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whereC? is the semi-implicit coefficient. This coefficient needs to be chosen for stabil
based on the value okt [3]. The advantage of the semi-implicit method over a fully
implicit scheme is the introduction of symmetric operators that are more easily inver
The relationship between fully implicit and semi-implicit schemes is outlined by Caram:
[16]. Forthe scheme presented in Section 2.2, Egs. (15)—(16) remain the same, but Egs.
(18) are modified as

b* —_pn c arj+1/2 _ an+1/2
1_ g.D)IFY2 i+y2 _ _C&41 j ’ P (22
(1-8s )—At 5T Ax (22)
bf"l+1 —_p" b* — b* a[H—l/Z _ ar.'H-l/Z
PR ) T e S e e e e Vi . L B C (23
At AX AX

whereD represents the numerical implementation of the semi-implicit opergids a
factor to be determined later for optimum stability. In the past [3, 4, 8] we hadgised
(i.e., no semi-implicit term in the predictor), which does not give maximum stability. V
now show thaiss = 1 gives optimum stability. Applying Hirt's method, we can show tha
the unstable wave—advection coupling term is

92a
ax2’

VCAt
2

[(1-D) ' — (18D (24)

which disappears if and only g5 = 1.

3. VON NEUMANN STABILITY ANALYSIS

The results presented in the previous section can be incorporated into a single ge
algorithm, the stability of which will be examined in detail in this section. We present t
algorithm and derive its dispersion relation. However, a simpler dispersion relation cal
derived in a heuristic way. From that we can extract an expression for the semi-imp
coefficient. The correctness of our assumption is pravedsteriorithrough a numerical
analysis of the full dispersion relation.

3.1. The Full Dispersion Relation

We write a general algorithm for wave propagation in the presence of advection as

a* — an—1/2 a Aan—l/z a Abn
- S = —B%c P 25
At TPy PuCax (25)
an+1/2 _ an—1/2 Aa* Ab"
_— 4 =—c—, C (26)
At AX AX
b* — b" Ab" Aanti/2
1-—BD b = —B0c=" , P 27
(1-8sD) X +ﬂvaX By Ax (27)
bn+1 —pn Ab* Aan+1/2
1—-D - = —Cc— , C 28
=D = T ax AX (28)

where we have simplified the notation. In order to be as general as possible, we
introduced several nonnegative numerical factfsandg? set the fraction of the advective
term in the predictors of the equation farandb; 2 and g2 do the same for the wave

w
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term; s sets the fraction of the semi-implicit term in the predictor equatiorbfdn order
to perform a Von Neumann stability analysis [14, p. 70], we introduce the following ter
in (25)—(28),

a?"rl/z — a.Zn+1/2eiijX, (29)

ik(j+1/2
b’j‘+1/2 = bZ'kUt/28x (30)
wherez = e~ '®At, After simplification, we obtain the dispersion relation

w?S? +w[(C, QP QY +CrQ (S?QY + QF)]

+(CuQu’QP QY + (CrQN*QL QY =0, (31)
where
w=2z-—1,
kAX
w=2sin{ — |,
o =2sn(*)
o — 1 — gkax for upwinded differencing of advective terms
"7 sin(kAX) for centered differencing of advective terms,
At?
1 _ 2 2
sSP =1+8,C o2
At?
8(2) =1 CZ_ 2 ,
+ Ax2 TV
CAt
Cp=—,
Y TOAX
At
Ci = [v| ’
AX

QY =1-B3CiQy,
QP =1-82CtQy,

CiQ
@ _ b it
Qb _1_18f S(l) ’
CiQ
@ _ 1 _ pbf¥f
b =1 IBw [SE) :

For the algorithm to be numerically stable we negjd< 1. The quadratic equation (31)
can be solved analytically to investigate in detail the consequences of various choic
parametersAZ, 8%, g2 , B2, Bs, and the semi-implicit coefficier€?) on the stability of
the algorithm. Notice that in the limkAx — 0 the stability limits derived from Eq. (31)
are consistent with those derived from Egs. (9) and (13). In particular, in previous work
developed a semi-implicit term for the case when flows were small, compared to tlea Alf
and sound speeds [3]. In the application of our algorithm to the modeling of the solar w
this assumption is not appropriate: the flow speed in fact exceeds the wave speeds,
the solar wind becomes supersonic and superehliv’as it expands into interplanetary
space. We have extended the formulation of the semi-implicit term to this case, as st
below. Extracting from Eq. (31) the analytical expression for the semi-implicit coefficie
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C? that gives the maximum region of stability i€,,, Ct) space (CFL numbers for waves
and flow) is a formidable task. Hence we prefer to proceed in a more heuristic way.

3.2. Heuristic Derivation of the Semi-implicit Coefficient

In order to obtain an expression for the semi-implicit fac@drin the presence of advec-
tion, let us first consider the dispersion relation whes 0. From Eq. (31), we can show
that in this case,

22
"2 c’k
= 32
© T 1l c®kear? (32)
where
- ) (wAt) 2
o =sinf — | —,
2 At
(33)
k =

.(kAx) 2
sinf — | —.
2 AX

For stabilityw must be real, which requires <2/ At. This gives the familiar expression
for C? found in [3]:

AX?

C? > max
VNG

(c2 -1), o}. (34)

Comparing Eqg. (2) (the analytical dispersion relation when advection is present) \
Eqg. (32), we suggest the following ansatz to include the effect of advection in a sim
fied dispersion relation,
o c2k?
»— kv = ——————. 35

@ — k) = T e (35)
Considering the most unstable calses kmax = 2/AX, we obtain the following inequality
that the semi-implicit coefficient must satisfy:

AX? c?
2-~m b U ] .
C?> ax{4 v {(1 02 }O} (36)

Detailed analysis of the dispersion relation, Eq. (31), confirms that this choice of se
implicit term indeed gives a stable algorithm even in the presence of significant flc
(see Section 3.4). Note that whén =1 (the CFL limit for pure advection);? becomes
infinite. A possible interpretation of this is that the semi-implicit coefficient cannot stabili
advection. This implies also th@t must not be too close to one in order to limit the amour
of artificial inertia introduced by the semi-implicit operator.

When this algorithm is implemented for the MHD equations, the semi-implicit coefficie
is given by Eq. (36) using the local wave and flow speeds. We find that this formulatio
stable and make8? nonuniform in space, which eliminates the artificial inertia associat
with the semi-implicit term whel,, is small.
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FIG. 1. Stability region in the(C,,, C¢) plane for explicit scheme<¢ = 0): (a) centered differenceg? =
B =1, B2 =p° =0; (b) centered differenceg? = B? =1, B2 = g° =1/2; (c) upwind differencesp? = g° =
B2 =B =0; (d) upwind differencess? = B2 =0, g2 = B> = 1/2. Note that the algorithms are stable @r=0
andC, < 1.

3.3. Explicit Algorithms

Equation (31) is a quadratic in and can be solved exactly. We will study the solutions i
the two parameter spa¢€,,, Ct). We consider explicit case€t = 0) first. Results are re-
ported in Fig. 1, where the shaded area implies stability (i.e., if Eq. (31) predicts stability
all the possible wave numbek¥. We first show that the traditional treatment of Eq. (1) (ir
which there are no wave terms in the predictor) has regions of instability. Namely, the stz
ity of the centered predictor—corrector algorithpd & g% = 1, 2 = g2 = 0) is presented in
Fig. 1a, which shows that the scheme is explicitly stable when the flow is al&seatQ) or
there are no wave€£(, = 0). When the wave speed is small, the flow has a stabilizing effe
due to the diffusive term on the right-hand sides of Eq. (8) that is proportionglAeo/2.
Introducing the fractional wave terms in the predicigi & 2 = 1, p2 =g =1/2) greatly
improves the stability of the algorithm (see Fig. 1b), as expected from the discussio
Section 2.1.

Next, we address the scheme with upwinding. In Fig. 1c we present the stability plot
an upwind scheme without a predictor—correcgir < g =0, B2 = B =0). This resultis
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in exact agreement with Eq. (14). When we introduce a predictor step containing a frac
of the wave termsf? = g =0, 2 = 82 = 1/2), we can extend the region of stability, as
shown in Fig. 1d. We have tried to use different valuesfAprand g2, but the maximum
stability region is found when both coefficients are one half in value, in accordance v
the analysis in Section 2.

3.4. Semi-Implicit Algorithms

We now introduce a finite semi-implicit coefficient in the algorithm and study the s
bility for C,, > 1. Let us first examine a case with centered differences. We include w.
terms in the predictor and the classic semi-implicit coefficient given by Eq. (34). T
parameters arg? =g =1, B2 =B =1/2, Bs=0. As shown in Fig. 2a, using a semi-
implicit term only in the corrector cannot yield a stable algorithm@gr> 1 unless there
is no flow. Adding the semi-implicit term in the predictor (i.e., settifig=1) greatly

a b
10 L0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
C; 05 C; 05
04 04
0.3 0.3
0.2 02
0.1 0.1
0 L e e S SR B 0
0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 67 8 910
¢y C,
c d
L0 L0
0.9 0.9
0.8 08
0.7 0.7
0.6 0.6
C; 05 Cr 05
04 04
0.3 03
0.2 0.2
0.1 0.1
0 e A e s 0
¢ 12 3 4 5 67 8 910 0 1 2 3 435 6 7 8 910

C“' Cll'

FIG. 2. Stability region in the(C,,, C;) plane for semi-implicit schemes: (a) centered differences, class
semi-implicit coefficientg? = g5 =1, 82 = B2 =1/2, B =0; (b) centered differences, classic semi-implicit co-
efficient,3 = g2 =1, 2 = B2 = 1/2, B =1;(c) upwind differences, classic semi-implicit coefficighft= > =
0,82 =82 =1/2, Bs=0; (d) full stability: centered differences, new semi-implicit coefficight,= g5 =1,

B2 =8> =1/2, Bs=1, or upwind differences, classic semi-implicit coefficiefit, = g% =0, 82 =2 =1/2,
Bs=1. Note that the algorithms are stable @&r=0 and allC,,.
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TABLE |
Parameters in Egs. (25)—(28) That Characterize
Algorithms Stable for C; <1 and anyC,

Differencing Sl coefficient g5 82 g p2 g
Centered New 1 1 % %
Upwinded Classic 1 0 0 % %
Upwinded New 1 5% 5% % %

improves the stability properties (see Fig. 2b). The region of stability can be extended «
further (i.e., stable for alC,,, for all values ofC; < 1) by using the new choice of semi-
implicit coefficient in Eq. (36) with centered differences and a predictor—corrector sche
(B2=p2=1, 82 =82 =1/2 Bs=1), as shown in Fig. 2d.

The situation is similar when upwind differences are used. For example, when one
a predictor step for the waves and the classic semi-implicit coefficient in the correc
only (83 =8%=0, g2 =P =1/2, Bs=0), the algorithm is stable fo€,, <2, as shown
in Fig. 2c. Introducing the semi-implicit term in the predictgg & 1) gives full stability for
Ct < 1,asshowninFig. 2d. Itis interesting to note that in this case the classic semi-imp
coefficient is sufficient for stability. Even though stability can be obtained in this case
using the classic semi-implicit term, in general it is advisable to use the improved se
implicit coefficient, Eq. (36), for the following reason. When this algorithm is implement
for the MHD equations, it is frequently difficult to separate the “advective” terms from t
“wave” terms. For example, consider Faraday’s equation for ideal MEIB: (—v x B/c),

§=VX(VXB). (37)
at

The termV x (v x B) has both an advective component; - VB, and a wave component
(the other parts). Therefore, it would be difficult to implement the above algorithm [upwi
differences with no predictor for the advective termi$ & 2 = 0) and a predictor for the
wave terms 2 = 2 =1/2)]. We have found that it is necessary to use the new sen
implicit coefficient wheng? andﬁ? are nonzero. Full stability fo€; < 1 can be obtained
wheng? <1/2 andﬁ? < 1/2 and the new semi-implicit coefficient is used. In particular th
algorithm with 8% = [3? = p2 =pP =1/2, with the new semi-implicit coefficient (in both
the predictor and the correct@s = 1), and with upwind differences, is stable for &l},
for C; < 1. This algorithm is our choice for advancing the full MHD equations.

In Table | we summarize the parameters that give fully stable algorithn@fer1. An
algorithm which had the semi-implicit and the wave terms in the predictor was presel
by Lerbinger and Luciani [6].

4. CONCLUSION

In this paper we have analyzed the numerical stability of algorithms for the advancen
of wave—advection equations. Our application is the time integration of the MHD equatic
Traditional algorithms were developed for applications where the flow speed was s|
compared to the Alfeh and sound speeds [3, 4, 8]. While applying our MHD model 1
the solar wind, which becomes supersonic and supereflfvin interplanetary space, we
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discovered a numerical instability that occurs in regions where the flow speed is large
analyzing the stability of our algorithm, as applied to a simplified model with waves &
advection, using Hirt's technique [12] and a Von Neumann stability analysis, we determi
that the source of the instability was the coupling between wave-like terms in the leap
advance and the advective terms.

We have presented techniques for fixing this instability, and we have proved that
resulting algorithm is stable. The implementation of this improved algorithm in our spher
MHD code has resulted in a more robust code (for an application see Lehker[17]).
We have also presented an improved formulation of the semi-implicit coefficient that te
into account the advective terms.

APPENDIX: SECOND-ORDER ACCURATE SCHEMES

In the paper we have examined advection schemes that are only first-order accurat
now briefly discuss how the stability properties are modified when second-order acct
schemes are used. The central scheme presented in Section 2.1 can be made second-c
curate by changing to Adams—Bashforth/Adams—Moulton predictor—corrector. We rew
Egs. (3) and (4) as

n-1/2 n-1/2 n—-1/2 n-3/2 n—-3/2
aj — a - 3aj,, —a  lajy —ag ) se e — 012 (38)
At 2 2AX 2 2AX X ’
n+1/2  _n-1/2 n-1/2 _n-1/2
a ' —a _ laj, —aj, n laj, —a1 ) c 12 — b2 (39)
At 2  2AX 2 2AX AX '

Equations (5) and (6) can be rewritten analogously. After we apply Hirt's method
following first-order term appears,

1 p) vCAt 3%b
2 ax2’
which can be eliminated if we chooge= 1 because the provisional valag is actually
an approximation foa"t'/2 and so a full predictor step for the waves is needed.
Similarly we can convertthe upwind scheme in Section 2.2 to second order by introdu

the modified Beam—Warming [18] algorithm

(40)

* n—-1/2 n n
ar — a; b" — bf
j i j+1/2 — Bj_1/2
= —pC——m——F—F——, 41
At p AX (41)
n+1/2 n-1/2 * * * * * *
g a7t sa-dAai g tal, L A2 tal,  bhap bl
At 2AX 2AX2 AX '
(42)
The resulting first-order error term is
1 vCAt 3%b
—z-8|—=. 43
<2 p ) 2 9x2 (43)

In this case3 must be%. In fact thea* terms in the corrector are actually an approximatio
for a". The same applies to Egs. (17) and (18).
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